Convergence Analysis of a Discontinuous Galerkin/Strang Splitting Approximation for the Vlasov--Poisson Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting methods for Vlasov–Poisson and Vlasov–Maxwell equations

A rigorous convergence analysis of the Strang splitting algorithm for Vlasov-type equations in the setting of abstract evolution equations is provided. It is shown that, under suitable assumptions, the convergence is of second order in the time step τ . As an example, it is verified that the Vlasov–Poisson equations in 1+1 dimensions fit into the framework of this analysis. Further, numerical e...

متن کامل

Convergence analysis for Backward-Euler and mixed discontinuous Galerkin methods for the Vlasov-Poisson system

We construct and analyze a numerical scheme for the two-dimensional Vlasov-Poisson system based on a backward-Euler (BE) approximation in time combined with a mixed finite element method for a discretization of the Poisson equation in the spatial domain and a discontinuous Galerkin (DG) finite element approximation in the phase-space variables for the Vlasov equation. We prove the stability est...

متن کامل

A discontinuous Galerkin method for the Vlasov-Poisson system

A discontinuous Galerkin method for approximating the Vlasov-Poisson system of equations describing the time evolution of a collisionless plasma is proposed. The method is mass conservative and, in the case that piecewise constant functions are used as a basis, the method preserves the positivity of the electron distribution function. The performance of the method is investigated by computing f...

متن کامل

Hamiltonian splitting for the Vlasov-Maxwell equations

— A new splitting is proposed for solving the Vlasov–Maxwell system. This splitting is based on a decomposition of the Hamiltonian of the Vlasov–Maxwell system and allows for the construction of arbitrary high order methods by composition (independent of the specific deterministic method used for the discretization of the phase space). Moreover, we show that for a spectral method in space this ...

متن کامل

Symmetrization of Vlasov-Poisson Equations

We detail the spectrum of the linearized Vlasov-Poisson equation, and construct an original integro-differential operator which is related to the eigenstructure. It gives a new representation formula for the electric field, and yields new estimates for the linear Landau damping. Then we apply the technique to a problem with a dependence to the Debye length, and show weaker damping for small Deb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2014

ISSN: 0036-1429,1095-7170

DOI: 10.1137/120898620